PINNATERPENES A, B, AND C, NEW DIBROMODITERPENES FROM THE RED ALGA LAURENCIA PINNATA YAMADA

Akio FUKUZAWA, Yoshikazu KUMAGAI, Tadashi MASAMUNE,*
Akio FURUSAKI, Takeshi MATSUMOTO, and Chuji KATAYAMA[†]
Department of Chemistry, Faculty of Science, Hokkaido University,
Sapporo 060

+Department of Chemistry, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464

The structures of three dibromoditerpenes, isolated from the title alga and designated as pinnaterpenes A, B, and C, were determined on the basis of the X-ray crystallography as well as the chemical and spectral data.

The title alga is a unique $\underline{\text{Laurencia}}$ species characterized by the fact that it contains marine phytosterols with moulting hormone activity related structurally to ecdysones and C_{15} vinyl acetylenic cyclic ethers with (12R,13R) - and (12S,13S)-configurations. Continuous careful examination of components of the alga led to isolation of three dibromoditerpenes instead of bromosesquiterpenes, which have usually been isolated from most of the $\underline{\textbf{L}}$. species. We report herein the isolation and structure elucidation of these diterpenes, designated as pinnaterpenes A (1), B (2), and C (3).

Neutral ether-soluble oil (7.5 g) obtained from methanol extracts of the alga (wet, 4 kg), collected at Motsuta point, Hokkaido, in early July, $^{1,2)}$ was fractionated by repeated chromatography over silica gel to yield 1 (48 mg), 2 (47 mg), and 3 (166 mg).

Pinnaterpene A (l), mp 89-93 °C (from hexane-CH₂Cl₂) and [α]_D -23.5° (CHCl₃), displayed the following spectra: FD-MS, m/e 432, 430, 428 (1:2:1, base), 450, 448, 446 and EI-MS, m/e 432, 430, 428 (1:2:1), 417, 415, 413 (1:2:1), and 147 (base); IR (KBr), 3580, 1715, 1270, and 1250 cm⁻¹; ¹H NMR, δ 1.03, 1.10, 1.15, and 1.29 (each 3H, s, 4 × \blacksquare -CH₃), 2.03 (3H, s,-OCOCH₃), 2.56 (1H, d, J = 15 Hz), 2.65 (1H, dd, J = 15 and 3 Hz), 3.93 and 3.95 [each 1H, dd, J = 12, 3 and 12, 4 Hz, 2 × \blacksquare -CH(Br)-CH₂-]. ⁵⁾ The highest triplet peaks in the high-resolution EI-MS (HREI-MS)⁶⁾ revealed the presence of a fragment cation corresponding to C₂₀H₃₀Br₂, which would evidently be formed by elimination of acetic acid [IR, 1715 and 1270 (or 1250) cm⁻¹; ¹H NMR, δ 2.03 (3H, s); ¹³C NMR⁵⁾ (Table 1), δ 171.0 (s) and 21.5 (q)] and water [IR, 3580 cm⁻¹; ¹³C NMR, δ 71.7 (s)]. These spectral data, coupled with the ¹³C NMR spectrum indicating the presence of 22 carbon atoms in total, suggested that the molecular formula of l would probably be represented by C₂₂H₃₆O₃Br₂. The whole structure was elucidated by the X-ray crystallography. ⁷⁾

The X-ray measurement was carried out at about -20 °C. The crystal data of 1 were as follows: $C_{22}H_{36}O_3Br_2$, monoclinic, space group $P2_1$, a = 15.404(4), b = 10.329(1), c = 7.410(2) Å, β = 102.13(2)°, Z = 2, D_C = 1.464 g cm⁻³. 2042 unique intensity data for 2θ < 130° were collected on an automatic, four-circle diffractometer using graphite-monochromated $CuK\alpha$ radiation. The structure was solved by the Monte Carlo direct method, $\frac{8}{3}$ and refined by the block-diagonal least-squares method. The absolute configuration was determined by taking account of the anomalous dispersion of bromine atoms for $CuK\alpha$ radiation. The final R value was 0.062. The molecular skeleton of 1 thus obtained is shown in Fig. 1.

The result suggested that pinnaterpene A (1) might be an 11-0-acetyl derivative of irieol C, which has recently been isolated from <u>L</u>. <u>irieii</u> by Howard and Fenical. In fact, treatment of 1 with hydride reagent (LiAlH₄ in ether, 0 °c, 40 min) afforded glycol (4), mp 153.5-155.5 °C (from CHCl₃) and $[\alpha]_D$ -29.2°, in 63% yield, which was identified as irieol C by direct comparison with an authentic sample, mp 136-137 °C and $[\alpha]_D$ -35.2° (lit., 9,10) amorphous solid and $[\alpha]_D$ 34.2°), isolated from "irieol C fraction" kindly donated by Howard. This transformation establishes the absolute configuration of irieol C.

Pinnaterpene B ($\frac{2}{6}$), mp 152-154 °C (from hexane-benzene) and $\left[\alpha\right]_D$ -20.6° (CHCl₃), was assigned molecular formula $C_{22}H_{36}O_{4}Br_{2}$ on the basis of the HRFD-MS, 6) and formed its monoacetate ($\frac{2}{6}$), oil and $\left[\alpha\right]_D$ -17.9° (CHCl₃). The spectra of $\frac{2}{6}$ and $\frac{2}{6}$ suggested that $\frac{2}{6}$ would differ from $\frac{1}{6}$ only in monohydroxylation at C-18 of $\frac{1}{6}$: $\frac{2}{6}$, FD-MS, m/e 527, 525, 523 (1:2:1), 508, 506, 504 (1:2:1), and 448, 446, 444 (1:2, base); IR (KBr), 3280, 1740, and 1250 cm⁻¹; $\frac{1}{6}$ H NMR, δ 1.04, 1.11, and 1.35 (each 3H, s, 3 × \blacksquare -CH₃), 2.03 (3H, s,-OCOCH₃), 2.49 (1H, d, J = 14 Hz), 2.62 (1H, dd, J = 15 and 4 Hz), 2.71 (1H, dq, J = 5 and 13 Hz, 2-axial-H), 3.2 (2H, br s, 2 OH), and 3.9 (4H, m): $\frac{2}{6}$, EI-MS, m/e 508, 506, 504 (1:2:1), 448, 446, 444 (1:2:1), and 145 (base); IR (CHCl₃), 3550, 1735, and 1260 cm⁻¹; $\frac{1}{6}$ H NMR, δ 1.04, 1.10, and 1.29 (each 3H, s), 2.03 and 2.06 (each 3H, s), 3.86 and 3.94 [each 1H, dd, J = 12 and 4 Hz, 2 × \blacksquare -CH₁(Br)-CH₂-], 4.22 and 4.65 (each 1H, ABq, J = 13 Hz, \blacksquare -CH₂OAc). This presumption was supported by the appearance of a new triplet peak at δ 64.0 in the $\frac{13}{6}$ C NMR spectrum (Table 1) instead of the methyl signal at δ 16.1 in that of $\frac{1}{6}$.

Compound 2, when treated with tosyl chloride in pyridine (20 °C for 2 d, 40 °C for 1 d, 60 °C for 1 d, and reflux for 1 d), was converted into cyclic ether (5), $C_{22}H_{34}O_3Br_2$, oil and $[\alpha]_D$ +7.1°, in 26% yield: 5, EI-MS, m/e 508, 506, 504 (1:2:1, M⁺), 448, 446, 444 (1:2:1), and 121 (base); IR (CHCl₃), 1731, 1263, and 1018 cm⁻¹; ¹H NMR, δ 1.04, 1.12, and 1.22 (each 3H, s), 2.02 (3H, s), 3.52 and 4.11 (each 1H, ABq, J = 9 Hz, \blacksquare -CH₂O-), 3.94 [1H, dd, J = 12 and 5 Hz, \blacksquare -CH_(Br)-CH₂-], and 4.16 [1H, dd, J = 9, 8 Hz, \blacksquare -CH_(Br)-CH₂-]. The same compound (5) was also obtained by oxidation of 1 with lead(IV) acetate and iodine in benzene (reflux, 2 d) ¹¹⁾ in 67% yield, establishing that 2 is 18-hydroxypinnaterpene A.

Pinnaterpene C (3), amorphous solid and [α]_D +29.2° (CHCl₃), was analyzed for C₂₂H₃₄O₄Br₂ by the HRFD-MS. ⁶) The spectra suggested that 3 would be an 18-hydroxy derivative of the cyclic ether (5) and hence possess a hemi-acetal structure: FD-MS, m/e 524, 522, 520 (1:2:1), 507, 505, 503 (1:2:1, base), and 464, 462, 460

Table 1.	¹³ C NMR	spectra	of	pinnaterpenes
----------	---------------------	---------	----	---------------

Table 1.	T C NI	MR spe	ectra of	f pi	nnaterpe	nes			
Carbon	Compound								
number	A (1)		в (д	в (2)		င (၃)			
1	65.0	(d)	64.8	(d)	65.0	(d)			
2	30.4	(t)	30.4	(t)	32.4	(t)			
3	40.4	(t)	37.5	(t)	32.5	(t)			
4	71.7	(s)	71.2	(s)	83.1	(s)			
5	60.0	(d)	61.1	(d)	58.8	(d)			
6	32.9	(d)	32.8	(d)	36.0	(d)			
7	31.9	(t)	31.8	(t)	31.9	(t)			
8	43.6	(t)	43.6	(t)	40.7	(t)			
9	47.1	(s)	50.8	(s)	62.3	(s)			
10	46.3	(t)	46.2	(t)	46.7	(t)			
11	83.8	(s)	83.9	(s)	83.5	(s)			
12	37.9	(t)	37.0	(t)	37.1	(t)			
13	30.1	(t)	30.4	(t)	30.4	(t)			
14	64.8	(d)	63.3	(d)	63.6	(d)			
15	36.6	(s)	36.5	(s)	36.6	(s)			
16	45.3	(t)	45.3	(t)	45.2	(t)			
17	32.3	(q)	32.3	(q)	22.0	(q)			
18	16.1	(q)	64.0	(t)	99.0	(d)			
19	22.8	(q)	22.8	(q)	22.9	(q)			
20	31.1	(q)	30.7	(q)	32.4	(q)			
СН ₃ CO	171.0	(s)	171.0	(s)	170.8	(s)			
ŭ	21.5	(q)	21.6	(q)	21.7	(q)			

Fig. 1 The structure of 1determined by the X-ray crystallographic method

(1:2:1); IR (neat), 3420, 1730, and 1245 cm⁻¹; ¹H NMR, δ 1.03, 1.11, and 1.30 (each 3H, s), 2.01 (3H, s), 2.58 (1H, dd, J = 15 and 3 Hz), 3.16 [1H, d, J = 4 Hz, \blacksquare -CH(OH)-O-, disappeared on addition of D₂O], 3.94 and 4.10 (each 1H, dd, J = 12, 4 and 12, 6 Hz), and 5.33 [1H, d, J = 4 Hz, \blacksquare -CH(OH)-O-, s on addition of D₂O]; ¹³C NMR (Table 1), δ 99.0 (d, 18-C) and 83.1 (s, 4-C). As expected, the compound (3) with the hemi-acetal moiety was reduced smoothly with sodium borohydride in ethanol (room temp, 2 d) to give pinnaterpene B (2) in 65% yield. Pinnaterpene C is therefore represented by formula 3.

References

- 1) A. Fukuzawa, Y. Kumagai, T. Masamune, A. Furusaki, C. Katayama, and T. Matsumoto, Tetrahedron Lett., 22, 4085 (1981).
- 2) A. Fukuzawa and T. Masamune, Tetrahedron Lett., 22, 4081 (1981).
- 3) These cyclic ethers are considered to be formed in vivo from a new precursor, (3E,6Z,9Z,12Z)-pentadeca-3,6,9,12-tetraen-1-yne, rather than laurediol; cf., H. Kigoshi, Y. Shizuri, H. Niwa, and K. Yamada, Tetrahedron Lett., 22, 4729 (1981); E. Kurosawa, A. Fukuzawa, and T. Irie, ibid., 2121 (1972).
- 4) Y. Naya, "Kaiyo Tennenbutsu Kagaku," ed. by the Chemical Society of Japan, Gakkai Shuppan Center, Tokyo (1979), p. 88; J. B. Martin and J. Darias, "Marine Natural Products," ed. by P. J. Scheuer, Academic Press, London (1978), Vol. 2, p. 125.
- 5) The NMR spectra were measured in chloroform- \underline{d} at 200 and/or 400 MHz for 1 H and at 25.2 MHz for 13 C, respectively. The abbreviation \blacksquare denotes a quaternary carbon atom.
- 6) HR-MS: 1, m/e 428.0727 (calcd for $C_{20}H_{30}Br_2$, 428.0715): 2, m/e 523.1008 (calcd for $C_{22}H_{37}O_4Br_2$, 523.1059): 3, m/e 520.0870 (calcd for $C_{22}H_{34}O_4Br_2$, 520.0824).
- 7) The details will be described in a full paper.
- 8) A. Furusaki, Acta Crystallogr., Sect. A, 35, 220 (1979).
- 9) B. M. Howard and W. Fenical, J. Org. Chem., 43, 4401 (1978).
- Howard and Fenical⁹⁾ reported that irieol C, amorphous solid (not crystalline), had $\left[\alpha\right]_D$ 34.2° (no sign). However, a sample, isolated in our laboratory from "irieol C fraction" donated by Howard and identified as irieol C (IR and ¹H NMR), had mp 136-137 °C and $\left[\alpha\right]_D$ -35.2°.
- 11) <u>Cf.</u>, J. F. Bagli, P. F. Morand, and R. Gaudry, J. Org. Chem., <u>28</u>, 1207 (1963).

(Received May 15, 1982)